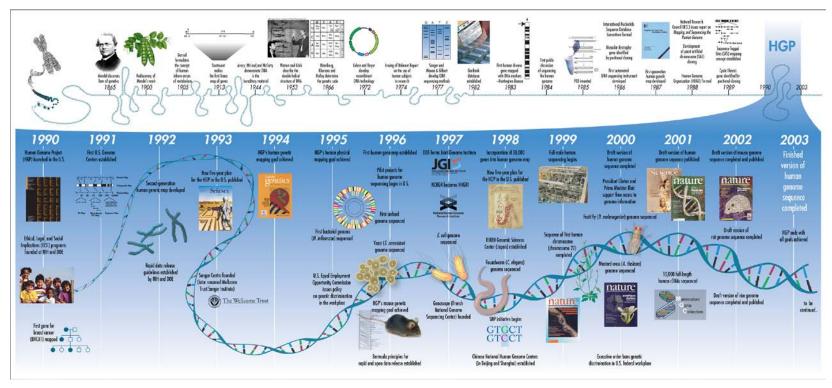


Margherita Mutarelli mutarelli@tigem.it


Next Generation Sequencing

- NGS technologies have lowered the cost of highthroughput sequencing
- Experiments once only possible for large genomic centers
 / consortium became feasible for the single group
- Several hundreds million sequence reads in a week at the cost of few thousand \$\$

The Human Genome Project timeline

Human genome sequence completion by Sanger sequencing took 13 years, involving More than 2,000 scientists from over 20 institutes in six countries at the cost of 2.7 billion dollars

The cost of an individual genome sequence

J. Craig Venter	Automated Sanger	MP from BACs, fosmids & plasmids	31.9	800	7.5	De novo	N/A	3.21	>340,000	70,000,000
James D. Watson	Roche/454	Frag: 500 bp	93.2‡	250 [§]	7.4	Aligned*	951	3.32 (BLAT)	234	1,000,000 ¹
Yoruban	Illumina/	93% MP: 200 bp	3,410‡	35	40.6	Aligned*	99.9	3.83 (MAQ)	40	250,000 ¹
male (NA18507)	Solexa	7% MP: 1.8 kb	271	35				4.14 (ELAND)		
Han Chinese	Illumina/ Solexa	66% Frag: 150–250 bp	1,921‡	35	36	Aligned*	99.9	3.07 (SOAP)	35	500,000 ¹
male		34% MP: 135 bp & 440 bp								
Korean male (AK1)	Illumina/ Solexa	21% Frag: 130 bp & 440 bp	393‡	36	27.8	Aligned*	99.8	3.45 (GSNAP)	30	200,000¶
		79% MP: 130 bp, 390 bp & 2.7 kb	1,156	36, 88, 106						
Korean male (SJK)	Illumina/ Solexa	MP: 100 bp, 200 bp & 300 bp	1,647‡	35, 74	29.0	Aligned*	99.9	3.44 (MAQ)	15	250,0001,*
Yoruban male	Life/APG	9% Frag: 100–500 bp	211‡	50	17.9	Aligned*	98.6	3.87 (Corona-lite)	9.5	60,0001.**
(NA18507)		91% MP: 600–3,500 bp	2,075‡	25, 50						
Stephen R. Quake	Helicos BioSciences	Frag: 100–500 bp	2,725‡	329	28	Aligned*	90	2.81 (IndexDP)	4	48,0001
AML	Illumina/	Frag: 150-200 bp ^{##}	2,730*.**	32	32.7	Aligned*	91	3.81 ^{‡‡} (MAQ)	98	1,600,000
female	Solexa	Frag: 150-200 bp ^{§§}	1,081***	35	13.9		83	2.92 ^{§§} (MAQ)	34	
AML male	Illumina/	MP: 200-250 bp ^{#‡}	1,620*.**	35	23.3	Aligned*	98.5	3.46 ^{‡‡} (MAQ)	16.5	500,000
	Solexa	MP: 200-250 bp ^{§§}	1,351***	50	21.3		97.4	3.45 ^{§§} (MAQ)	13.1	
James R. Lupski	Life/APG	16% Frag: 100–500 bp	238‡	35	29.6	Aligned*	99.8	3.42 (Corona-lite)	3	75,000111
CMT male		84% MP: 600–3,500 bp	1,211‡	25, 50						

^{*}A minimum of one read aligning to the National Center for Biotechnology Information build 36 reference genome. Mappable reads for aligned assemblies. Average read-length. ID. Wheeler, personal communication. Reagent cost only. S.-M. Ahn, personal communication. K. McKernan, personal communication. Mumour of normal samples: reagent, instrument, labour, bioinformatics and data storage cost, E. Mardis, personal communication. C. Communication. Reagent, instrument, labour, bioinformatics and data storage cost, E. Mardis, personal communication. Reagent, instrument, labour, bioinformatics and data storage cost, E. Mardis, personal communication. Reagent, instrument, labour, bioinformatics and data storage cost, E. Mardis, personal communication. Reagent, instrument, labour, bioinformatics and data storage cost, E. Mardis, personal communication. Reagent, labour, bioinformatics and data storage cost, E. Mardis, personal communication.

NGS Applications

Targeted sequencing

 Effective enrichment of selected parts of the human genome at high coverage

Whole exome NGS

 Sequencing of the whole exome or the all the exons of the X chromosome

small RNA-seq

Identification and quantification of miRNA in tissues

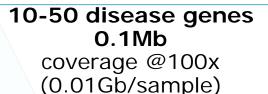
RNA-seq

 100 x 2 Identification of novel mRNA species and digital quantification

ChIP-seq

 Sequencing of chromatin immunoprecipitate

Mate Pair Sequencing


 identification of structural variants (i.e. due to abnormal insertions)

DNA resequencing at different scales

HaloPlex

preferential exome 1-3Mb coverage @200x (1Gb/sample)

whole genome 3Gb coverage @40 x (150 Gb /sample)



TIGEM NGS Facility set-up

The Illumina HiSeq was purchased by the Ministry of Research Telethon Foundation supports a technician salary

Consumables are from individual P.I. grants (ERC, Universities, Telethon, private, etc. ..)

10 days per run

2x100nt Paired-end

Max 300Gb sequence

DNA resequencing

657

50-250 disease genes 0.5Mb

coverage @300x (0.2Gb/sample)

coverage @200x (1Gb/sample)

3Mb

First run:

Febr. 2012

Last run:

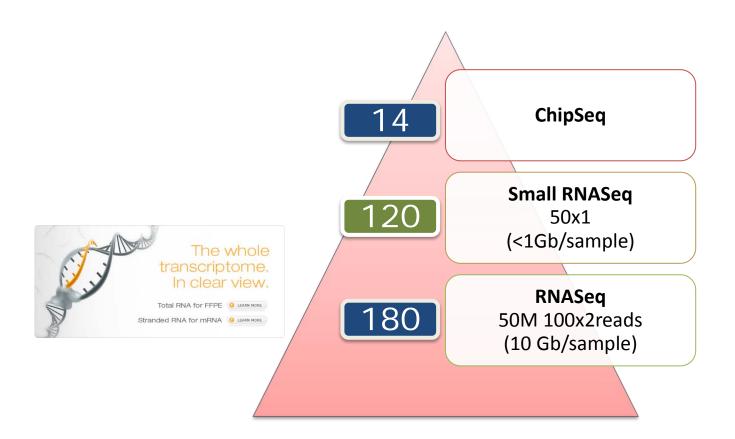
June 2014 (ongoing)

284

216

whole exome 50Mb

coverage @60 x (10 Gb/sample)



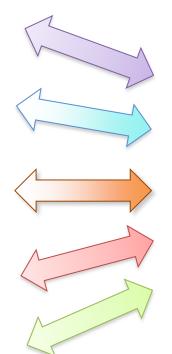
HaloPlex

other applications

Experiment design

Sequencing experiment

Sample preparation

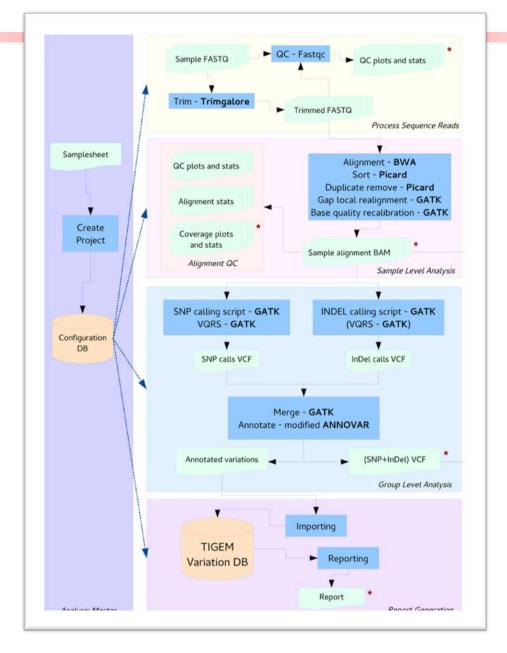

Sequencing

QC assessment, application-specific preprocessing

Alignment on reference

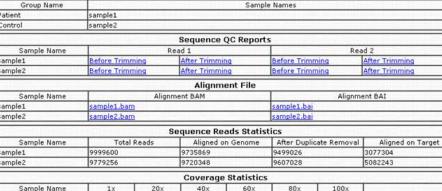
Output format, applicationspecific post-processing

Application-specific analysis



Data management

eXSP pipeline



Exome Mendelian Disorder Workflow

MEDIC disease vocabulary

CREATE NEW ANALYSIS RESULTS Analysis Name* Family: Analysis Name : analysis 1 Number of Samples: **Grouping Information** Group Name Disease*: Control sample2 Confirm Disease Association: Mode of Inheritance*: Read 1 Sample Name Agilent SureSelect Human All Exon V4 Target Enrichment*: sample1 Before Trimming After Trimming After Trimming sample2 Before Trimming Upload Method*: Web Upload Submit Sample Name Alignment BAM sample1 sample2 sample2.bam Sample Name sample1 9999600 9735869 ANALYSIS STATUS AND REPORTS 9779256 9720348 sample2 Status Color Coding Sample Name 40x 1x 20x 83.865 4.69737 0.368594 0.0776972 sample1 Variant Calling OC and Alignment and Statistics sample2 94.9522 4.00696 1.18086 0.404696 Queued pre-processing and Annotation **Variation File** Group Name VCF File Patient analysis 1.vcf Control **Variation Analysis Report** Num Analysis Name Date Disease Status Report Group Name Patient analysis 1 variation report.xlsx 2013-05-08 3-hydroxyacyl-coa d... analysis_1 results Control analysis 1 control variation report.xlsx analysis 2 2013-07-06 46,XX SEX REVERSA.. edit

0.0302712

analysis 1.vcf.idx

0.153611

Report

0.0126909

0.0926404

VCF Index

http://exome.tigem.it

arget Coverage Plot PNO

Exome Mendelian Disorder Report

Gene Related Annotation

Symbol	Exonic Func	Gene Func	Aachange
TNPO3	stoploss SNV	exonic	NM_001191028:c.2579delA:p.X860C

General Variation Information

Certeral variation information									
chrom	pos	ref	alt	type	qual	filter	vq:	lod	Sample 1 Variation Class
chr7	128597309	CT	С	del	947.98	PASS			I

Variation Class							
Class	Frequency	Quality	Impact				
Ι	+	+	+				
II	+	+	-				
III	+	-	+				
IV	+	-	-				
V	-	+/-	+/-				

Genotype Information For Sample

Sample1 ZYG	Sample1 GT	Sample1 N REF reads	Sample1 N ALT reads	Sample1 N tot reads	Sample1 Perc ALT reads	Sample1 GQ
HET	0/1	26	27	52	51.9	99

Functional Predictions For Protein Damage

	Avsift	LJB SIFT	LJB SIFT Pred	LJB PolyPhen2	LJB PolyPhen2 Pred	LJB LRT	LJB LRT Pred	LJB Mutation Taster	LJB Mutation Taster Pred
Г									

Functional Predictions For Phylogenetic Conservation

LJB PhyloP	LJB PhyloP Pred	LJB Gerp++	Conserved
			654;Name=lod=609

Variation Frequency From Exome Sequencing Project (ESP) & 1000 Genome Project

freq ESP6500 freq1000g 2012apr ALL	freq1000g 2012apr AFR	freq1000g 2012apr AMR	freq1000g 2012apr ASN	freq1000g 2012apr EUR

dbSNPAnnotation

dbsnp137	dbSNP137 NonFlagged	dbSNP137 Observed Allele	OMIM

Disease Group Allele Frequency From TIGEM Variant DB

freq Disease ID:X	freq Disease ID:X Con	ntrols freq Disease ID:1	freq Disease ID	freq Disease ID:N

Next Generation Sequencing core

NGS Core

P.I.: Vincenzo Nigro

Annalaura Torella

Manuela Dionisi

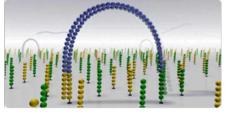
Marco Savarese

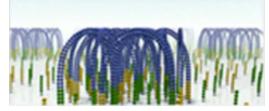
Giuseppina di Fruscio

Bioinformatics Core

P.I.: Diego di Bernardo

Margherita Mutarelli


Veer Singh Marwah


Diego Carrella

